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ABSTRACT

Dynamic Targeting (DT) is a mission concept in which
data from a lookhead sensor is continuously analyzed to
determine how to target a primary sensor. We review
the base concept and discuss several efforts to mature
the concept. First we discuss efforts to extend the DT
concept to more complex slewing and observation util-
ity models as well as discuss realistic execution timing.
Second, we describe investigations to learn DT targeting
policies. Third, we discuss flight of DT on the ESA OPS
SAT testbed.
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1. INTRODUCTION

Dynamic Targeting (DT) is a mission concept in which
instrument observations are used to rapidly reconfigure
and repoint an instrument to optimize science observa-
tions.

Studies have already shown DT to be a promising tech-
nology for cloud avoidance and hunting deep convective
ice storms. In the cloud avoidance use case, a lookahead
instrument is used to identify clouds allowing an agile
imager to avoid identified clouds to acquire cloud free
targets. In the storm hunting case a lookahead sensor is
used to identify plausible storm centers allowing an elec-
tronically steered radar to target to increase the yield of
deep convective storms.

We also describe challenges in extending the original
framework to more realistic problems including: ac-
counting for slewing limitations, accounting for varying
utility models affecting observation of the same point
multiple times, and accounting for utility models prefer-
ring or not preferring proximal observations. We then
describe realistic timing constraints required by DT. We
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Figure 1. Dynamic targeting uses current and previous
information from a lookahead sensor to identify future
targets for the primary pointable instrument in order to
improve science yield.

also outline efforts to utilize deep learning to learn ob-
servation policies. In this paper we also describe efforts
to flight validate DT technology on the ESA OPS SAT
satellite. We also describe efforts to build an additional
use case to study Planetary Boundary Layer (PBL) phe-
nomena.

2. DYNAMIC TARGETING

Dynamic Targeting (DT) is a mission concept [1] (See
Figure 1) in which a lookahead sensor acquires data
which is then rapidly processed and used to retarget a sen-
sor either to measure a designated science phenomena of
interest (e.g. deep convective storm) or avoid conditions
that may prevent measurement (e.g. clouds that obscure
imaging of the Earth’s surface or atmospheric measure-
ments using lidar or IR sounder).

DT has been studied with multiple simulated datasets [1]
[2] [3] [4] demonstrating great promise in improving sci-
ence return for multiple use cases. DT algorithms for
both lookahead data classification and targeting compu-
tation have even been tested onboard Snapdragon 855
embedded processors in the International Space Station
(ISS) [5] [6] but not attached to any instruments (e.g. only
batch processing on canned data - not on continuous data
streams with processing time constraints). DT has even



been used operationally for the JAXA TANSO-FTS-2 in-
strument flying on GOSAT-2 [13] for cloud avoidance.

Because the DT operations flow is a radical departure
from traditional “mow the lawn” NASA Earth Science
missions (see Table 1), it is critical that this new, com-
plex operations flow be flight validated to provide assur-
ance for future missions that DT is mature.

Because of the complexity of steps 1.-6. in Table 1 which
must be performed continuously and within single over-
flight time constraints (typically 60 seconds or less for a
typical Low Earth Orbit (LEO) geometry including slew-
ing time), in-space flight demonstrations are needed to
prove the technical feasibility of the DT concept.

2.1. Extending Slewing and Utility Models

Recent work on DT has addressed making the slew and
utility models for DT more realistic. Initial DT work
emerged from the SMICES mission concept which used
a targeting radar for the primary instrument, and that
the radar electronically steered and therefore had infinite
agility. More recent work extends the DT models [7].

First, slewing constraints are enforced by a hard con-
straint on reachability by the next timestep. Longer slews
are possible but are modelled by skipping an observation
at the next timestep.

Second, the base DT model presumes that an observation
can be acquired multiple times with constant utility unaf-
fected by viewing geometry. This drives the base DT al-
gorithm to repeatedly observe high utility targets in order
to maximize utility. An extension to this model allows
for utility to be affected by viewing geometry (either to
prefer nadir or off nadir observations). Extensions also
allow for increasing or decreasing utility from repeated
observation of the same target. Additional work is inves-
tigating increasing ( or non-decreasing) utility but only if
sufficiently different viewing geometry. All of this addi-
tional complexity in utility makes the observation utility
search space much more complex and computationally
more challenging to search which is a challenge given
that DT relies on the ability to respond (including instru-
ment repointing) within a single overflight (typically 60
seconds at Low Earth Orbit). However with the advent
of edge processors such as Snapdragon, NVIDIA, Gum-
stix, and others being flown in space [5] [6] [8] DT still
appears computationally feasible.

2.2. Timing considerations for DT

One of the driving challenges for DT is that it must con-
tinually acquire and process data as well as retask the
primary sensor all while flying at approximately 7.5 km
per second (low Earth orbital speed). Table 2 shows a
rough operational timeline for both the dedicated looka-
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Figure 2. A convolutional neural network (CNN) is
trained to learn policies using expert demonstrations. In
this case, the CNN learns when to trigger observations as
a function of the lookahead sensor data and the SOC.

head sensor case and the single sensor shared lookahead
and primary (nadir) case.

As shown for a moderately agile spacecraft configuration
(across track slew in 30s, along track slew of up to 50
degrees in 40s) the DT timeline is feasible.

3. LEARNING DT POLICIES

We are also investigating potentially improving DT algo-
rithms [1] by leveraging learning and data-driven meth-
ods. Data patterns found in simulations can be exploited,
allowing for custom policies that better adapt to different
situations and scenarios (e.g., cloud avoidance vs. storm
hunting). Specifically, we build on our DT algorithms
so they can learn when it is best to trigger observations,
while retaining prior logic that decides where to target
the primary instrument. Herein we explore two different
learning approaches: imitation learning and reinforce-
ment learning.

Imitation learning consists of learning to replicate the ac-
tions of an expert agent. In our previous work, we present
a dynamic programming (DP) algorithm that produces
optimal policies (given a particular set of assumptions).
However, DP is generally not deployable on missions be-
cause it is computationally expensive, it uses a lookahead
sensor range that is physically unrealistic, and it requires
information of future states. Despite these limitations,
DP is very valuable as it not only serves as an upper
bound on performance, but also as an expert whose op-
timal policies can be approximated offline via learning,
allowing for onboard inference, planning, and execution
with more realistic mission resources. We employ be-
havioural cloning, a form of imitation learning that pre-
dicts optimal actions from states using supervised learn-
ing on expert demonstrations, in this case from our DP al-
gorithm. We train a convolutional neural network (CNN)
where the input states are lookahead sensor data in con-
junction with the current state of charge (SOC), while
output actions are binary variables that dictate whether
or not to trigger an observation (Figure 2).



Table 1. Traditional “mow the lawn” mission flow versus Dynamic Targeting (DT) operations flow.
DNE = Does Not Exist

Element “Mow the lawn” business as
usual

Dynamic Targeting disruptive operations flow

1. Lookahead instrument and
Data

DNE (does not exist) Immediately streamed for real-time decision
making

2. Edge Computing Minimal if any Required for real-time processing

3. Onboard processing DNE - calibrated and cor-
rected on ground

Lookahead data calibrated and corrected “on the
fly” as needed

4. Lookahead data interpreta-
tion

DNE – analyzed on ground Immediately analyzed into meaningful science
categories for targeted instrument operations

5. Retargeting and reconfigu-
ration of primary instrument

DNE – no reconfiguration and
retargeting takes place

Decision-making on Reconfiguration and retar-
geting of targeted instrument

6. Targeted instrument Stored onboard in raw format
for later downlink

Reconfigured and targeted as per policy deter-
mined above; data stored onboard for later down-
link.

Table 2. Onboard timeline for processing of data and retargeting. * - tasks 3 and 4 can be done in parallel.

Element DT with dedicated lookahead
sensor

DT utilizing primary sensor as lookahead sensor

1. Lookahead instrument ac-
quires Data

4s 4s

2. Lookahead data transfer,
calibration and analysis

4s 4s

3. Slew across track to
detection*

30s 30s

4. Slew along track to nadir (1
instrument)*

N/A 40s

5. Primary instrument data
take

4s 4s

Total of above timeline 42s 52s

Orbital Time for 40, 45, and
50 degree lookahead at 500km

60s, 74s, and 90s 60s, 74s, and 90s

Reinforcement learning is a different approach that learns
policies without relying on an expert agent. Instead,
a learning agent interacts with the environment and re-
ceives feedback via a reward function that incentivizes
“good” actions and penalizes “bad” actions, in this case,
by observing interesting or unimportant cloud types. Re-
inforcement learning is an iterative approach that im-
proves gradually by learning from its mistakes and suc-
cesses throughout many simulations runs. Here we use
the Q-learning algorithm to train an agent so it learns
when to trigger observations as represented by a binary
action variable, while prior logic takes care of pointing
the primary instrument.

4. FLIGHT OF DT ON OPS-SAT

Another version of DT has been developed that computes
rewards over sets of targets while optimizing a cost func-
tion such as the accumulated slew angle.

The operational workflow of the so-called MIRE (dy-
naMIc taRgeting Experiment) version involves capturing
a lookahead image, processing it to identify cloud forma-
tions, and selecting a subset of these clouds that maxi-
mizes the scientific reward. For each target, an image is
captured. All these steps are performed within each 14-
second DT cycle [9].

The European Space Agency’s OPS-SAT cubesat [10] il-
lustrated in Figure 3 is planned to be the first flight of



Figure 3. OPS-SAT Payload. Image courtesy of ESA.

DT by JPL. Unfortunately, the OPS-SAT does not have
a lookahead sensor and the OPS-SAT pointing interface
and agility do not allow for the single sensor to looka-
head and slew back for the primary measurement. There-
fore, DT on OPS-SAT utilizes the large field of view of
the OPS-SAT imager and subframing to approximate the
lookahead and primary imager. OPS-SAT acquires an
image and subframes the ahead-of-track portion as the
lookahead image and based on the contents of said image
acquires a subsequent image subframing the behind-track
portion as a stand-in for the primary image.

Following a successful trial run on the OPS-SAT Flat-
sat ground testbed in May 2023, the experiment is slated
for on-board execution in September 2023. To further
validate the algorithm’s reliability over extended periods
(multiple orbits), a second test has been scheduled before
the end of the year.

5. DT FOR PLANETARY BOUNDARY LAYER
STUDY

The DT team has also been studying the applicability
of DT to capturing transient Planetary Boundary Layer
(PBL) [11] [12] [13] phenomena. In this concept, the
DT instrumentation may be distributed across multiple
space platforms. The lookahead sensor(s) would include
a Hyperspectral Infrared Sounder (Hyperspectral IR) and
a Hyperspectral Microwave sounder (Hyperspectral MW)
which would be used to search for areas of high varia-
tion in temperature and humidity that are indicative of
PBL phenomena. This information would be used to tar-
get a DIfferential Absorption Lidar (DIAL) and Differen-
tial Absorption Radar (DAR). The concept is well suited
to DT as the DIAL is narrow FOV and is best suited
for clear sky applications and the Differential Absorp-
tion Radar (DAR) is also narrow FOV, is best suited for
opaque storms, and is power hungry. GNSS data would
also be used to supplement the PBL study.

Figure 4. Concept for use of Dynamic Targeting to
capture transient Planetary Boundary Layer phenomena.
Image courtesy PBL Study Team.

6. RELATED WORK

Onboard analysis of science images has been flown be-
fore, even operationally. The Autonomous Science-
craft on EO-1 analyzed Hyperion VSWIR images on-
board for Thermal (Volcano, Wildfire) [14], Cryosphere
[15], Cloud-screening, and Hydrology [16] applications
as well as hyperspectral unmixing [17]. Notably the
Cryosphere application used a Support Vector Machine
(SVM) learned classifier. Later in the mission [18] Ran-
dom decision forest (RDF) classifiers and salience were
flown. However, ASE responses were on the order of
one orbit (e.g. 90 minutes) and were not 60 seconds
within the same overflight as proposed by DT. Notably,
the Superpixel segmentation and Hyperspectral unmix-
ing took 6 hours onboard the 6 MIPS Mongoose V pro-
cessor. The IPEX mission demonstrated high throughput
onboard data processing [8] (including RDF classifiers)
using both an ATMEL ARM COTS processor as well as
a Gumstix payload processor. But IPEX did not retar-
get or change any actions due to the data analysis and
did not have a science quality instrument. ESA’s recent
Phi-Sat mission flew an Intel Myriad and used a deep
learned CNN to detect clouds [19]. Most notably the
TANSO-FTS-2 instrument on GOSAT-2 is operationally
using cloud avoidance (a form of DT) [20].

Flight of onboard planners/schedulers onboard spacecraft
is exceptionally rare. In 1999, the Remote Agent flew
the RAX-PS planner which controlled the Deep Space
One mission for two periods totalling approximately 24
hours [21]. In 2013, the CASPER planner flew onboard
the IPEX cubesat [8] for over 1 year. More recently, the
Mexec planner (related to the M2020 OBP) flew onboard
the ASTERIA cubesat for 4-20 September 2019 [22]. Fi-
nally, the CASPER planner flew onboard the Earth Ob-
serving One mission from 2004-2017, controlling all EO-
1 activities for over a dozen years [23].



7. CONCLUSIONS

Dynamic Targeting (DT) is a novel mission concept
where lookahead sensor data is used continuously to tar-
get a primary sensor. DT has shown promise in simula-
tion studies for storm hunting and cloud avoidance. In
this paper we have described efforts to mature DT in-
cluding extending the slewing and utility models, devel-
oping realistic timing requirements for Low Earth Orbit,
learning DT policies, developing DT use cases for study-
ing Palnetary Boundary Layer phenomena, and flight on
ESA’s OPS SAT orbital testbed.
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